

An Introduction to Supercomputers

Presentation to the Linux Users of
Victoria Beginners Workshop

May 17, 2013
http://levlafayette.com

1. A Definition

1.1 What Is A Supercomputer Anyway?

An arbitrary term with no specific definition. In general use it means any single computer system (itself a
contested term) that has exceptional processing power for its time. A well-adopted metric is the number of
floating-point operations per second (FLOPS) such a system can carry out.

Supercomputers, like any other computing system, have improved significantly over time. The Top500 list has
seen as doubling of FLOPS roughly every 14 months. The theortical maxima for a system is cores * clock
speed * FLOPS/cycle. The following is some metrics for illustrated purposes from the Top500.

1993: 124.50 GFLOPS
1994: 170.40 GFLOPS
1996: 368.20 GFLOPS
1997: 1.338 TFLOPS
1999: 2.3796 TFLOPS
2000: 7.226 TFLOPS
2004; 70.72 TFLOPS
2005: 280.6 TFLOPS
2007: 478.2 TFLOPS
2008: 1.105 PFLOPS
2009: 1.759 PFLOPS
2010: 2.566 PFLOPS
2011: 10.51 PFLOPS
2012: 17.59 PFLOPS

1. A Definition

The current number #1 system (pictured above) is "Titan", built by Cray at Oak Ridge Nation Laboratory, a
hybrid system using graphics processing units (GPUs) and well as CPUs. An upgraded version of a previous
number one holder, Jaguar (from Nov 2009 and Jun 2010), the upgrade cost was $60 million USD, primarily
from the US Department of Energy.

1.2 Why Supercomputers Are Important

The importance of supercomputing cannot be measured
simply by their processing capacity, but rather what is
done with that capacity. Essentially however, any hard
number-crunching or processor intensive visualisation
requires a supercomputer for both speed and effectiveness.
Supercomputers are typically (but not exclusively) used
for scientific computing. Some applications have included
weather forecasting, aerodynamic design, fluid mechanics,
radiation modelling, molecullar dynamics, CGI rendering
for popular movies.

A local example, researchers from Monash University,
the Peter MacCallum Cancer Institute in Melbourne, the
Birkbeck College in London, and VPAC in 2010 unravelled
the structure the protein perforin to determine how
pathogenic cells (c.f., http://www.nature.com/nature/journal/v468/n7322/full/nature09518.html).

2. The Contemporary Supercomputer

2.1 The Teamster Analogy

The contemporary supercomputer is a high performance cluster with a tightly-coupled high-speed
interconnect that uses parallel applications. This can be explained as a teamster analogy; if a compute task is
a considered to be the equivalent of moving goods from 'a' to 'b' using a horse and cart you can either (a) get
a really big horse and cart (a bigger and more powerful single system)., (b) perfect the distribution of the load
on the horse and cart (code optimisation)., (c) use a large number of horses and carts and distribute the task
between them with a teamster used to manage the convoy.

The best supercomputer uses all three. But with (c) it doesn't matter if one set breaks down, as there are
others to take their place (high performance); normal horses and carts are readily and cheaply available (low
cost).

2.2 Clusters (and their friends)

In the 1960s the big innovation was pipelining, putting data processing in a series, where the output of one is
the input of the next. In the 1970s vector processors were common - using a instruction set on a one-
dimensional arrays of data (vectors) - single instruction, multiple data. In the 1980s multicore systems with
distributed memory and file systems became more common. As multicore systems became increasingly
common so did distributed shared memory (physically separate memories can be addressed as one logically
shared address space).

A cluster is defined of individual computer nodes designed to operate a single system, whether tightly
connected or loosley. Despite being potentially loosley connected it is usually considered different to peer-to-
peer or grid computing, which are typically heterogeneous, and geographically dispersed.

2. The Contemporary Supercomputer

2. The Contemporary Supercomputer

2.2 The Interconnect

The interconnect is the communication chanel between the nodes of the
cluster. A cluster can be made from something a simple as Cat-5e
Ethernet, but it won't be very fast! The use of switched fabric (rather
than Ethernet's hierarchical architecture) is common.

A common form of interconnect is Infiniband (manufactured by
Mellanox and Intel), with a theoretical peak of 300 Gbit/s, and a
 minimum of latency of of less than 1 microsecond for RDMA
(remote direct memory access) operations. Others use a torus
interconnnect topology. The Tianhe-I used a proprietary interconnect
called Arch that runs at 160 Gbit/s, twice the bandwidth of Infiniband
(at the time)

2.3 Parallel Applications

Parallel applications break down large problems can often be divided into smaller ones, which are then solved
concurrently. A simple example would be to generated a pool of 1000 random die rolls. These could be
solved serially, rolling one dice, recording the result, then rolling the next one. Or it could be solved by rolling
1000 dice simultaenously.

Parallel programming is not easy! A parallel programmer may have to worry about the order that results come
back, the propsect of bottlenecks and deadlocks in the system, and conflicts in memory.

3. The Contribution of GNU/Linux

3.1 GNU/Linux: The Operating System of Choice

In November 2012 of the Top 500 Supercomputers worldwide, only about 0.6% did not use a "UNIX-like"
operating system (a decline from 1.4% on November 2007 and 1.0% in November 2012) and nearly all use
an operating system that is entirely "free and open source" (a small percentage use a combination of free and
proprietary systems).

3.2 Efficiency of the Command Line

For most users a Graphic User Interface (GUI) is how they interact with a computer system, and there are
some advantages with this, not the least being a usually intuitive visual representation for actions. However
this takes up significant computer resources. In contrast a command-line interface provides a great deal more
power and is very resource efficient. Running supercomputers with a GUI is not a sound policy.

3.3 GNU/Linux Scales, It's Stable and It's Open

GNU/Linux scales and does so with stability and efficiency. Secondly, critical software such as the Message
Parsing Interface (MPI) and nearly all scientific programs are designed to work with GNU/Linux. Thirdly, the
operating system and many applications are provided as "free and open source", which means that not only
are there are some financial savings, were also much better placed to improve, optimize and maintain specific
programs.

3.4 Compilation and Optimisation

Free or open source software (not always the same thing) can be can be compiled from source for the
specific hardware and operating system configuration, and can be optimised according to compiler flags.
There is necessary where every clock cycle is important.

4.0 A Hands-On Experience

4.1 Logging On

Open up two instances of a terminal. One will be a logon to the local machine, the other will be a logon to the
cluster.

On one of the terminal windows run:

ssh trainXX@trifid.in.vpac.org

4.2 Environment Modules

Environment modules provide for the dynamic modification of the user's environment via module files. Each
module contains the necessary configuration information for the user's session to operate according
according to the modules loaded, such as the location of the application, its manual path,
LD_LIBRARY_PATH and so forth.

Run the following commands.

module avail
module load vpac
module list
module display gcc/4.7.2

4.0 A Hands-On Experience

4.3 PBS Scripts

The Portable Batch System (PBS) is the name of a utility software that performs job scheduling among the
available resources. The schedular provides for paramterisation of computer resources, an automatic
submission of execution tasks, and a notification system for incidents. There is a variety of PBS applications
available (TORQUE, Slurm, etc). We'll use TORQUE today (supported and maintained by Cluster Resources
Inc).

A sample PBS script; review its content.

cp /common/examples/NAMD_training_example/pbs_example_script .
less pbs_example_script

Note the loading of the module, the processors it expects, the walltime (the job ends if this is exceeded), and
the mpiexec running namd with a configuration file.

Who is running jobs at the moment?

showq | less

Other command commands include qsub (submits a job) and qdel (deletes a job).

5.0 Two Example Applications
5.1 Submitting and Reviewing a Job (R)

Go to the home directory on the cluster and copy the R directory to the home directory

cd ~
cp r /common/examples/R/ .

Look at the file pbs-script to see what it is doing. The comments should be self-explanatory;

less pbsscript

Look at the tutorial.R script (less tutorial.R). Firstly, it imports the w1.dat and trees91.csv files into appropriate
variables. Then it plots a histogram, breaks, a box plot, normal quantiles, a scatter plot relationship. The
output file will also record the correlation of the scatter diagram.

Submit the job

qsub pbsscript

5.2 Collecting and Viewing Results (Evince)

When it is complete (check with showq -u [username] run and ls on the directory. Apart from the error/output
files, there will also be an a PDF file. Copy this to the local system and view it with evince.

scp trainXX@trifid.in.vpac.org:R/Rplots.pdf .
evince Rplots.pdf

5.0 Two Example Applications
5.3 Submitting and Reviewing a Job (NAMD)

Copy the full NAMD training example to the home directory.

cp r /common/examples/NAMD_training_example .

View the configuration file
cd NAMD_training_example
less Ubiquitin_example.conf

Review the PBS script
less pbs_example_script

Submit the job
qsub pbs_example_script

5.4 Collecting and Viewing Results (VMD)

When it is complete (check with showq -u [username] run and ls on the directory. There will be an error and
output file and a lot of other files (structure, .

Copy these to the local machine
scp r trainXX@trifid.vpac.org:NAMD_training_example .

Start up vmd, load the protein structure file, (1ubq_example.psf), then the protein starting position
(1ubq_example.pdb), then the trajectory data (1ubq_example_output_01.dcd).

Thank You VPAC!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

