

More Linux on Spartan

COMP90024 Cluster and Cloud Computing

University of Melbourne, 21st March 2023
lev.lafayette@unimelb.edu.au

Capability and Performance

Part One of this workshop introduced the Linux CLI on an
HPC system.

Part Two will extend the command knowledge and introduce
scripting.

Scripting allows for the automation of tasks.

When combined with wildcards, looping logic, conditional
statements, etc relatively short and simple commands can be
constructed that would otherwise be very time-consuming,
robotic, and demanding involvement from the user.

Archiving and Compression

UNIX-like systems have several archiving and compression
options often referred to as “tarballs”. The tar command (tape
archive) is the archiver; compression systems include gzip,
bzip2, xz and more.

To determine the type of a file: file class.tar.gz
To review the contents of a tarball: tar tf class.tar.gz

To recover from a tarbomb: tar tf tarbomb.tar | xargs rm -rf
To extract a tarball: tar xvf class.tar.gz

To create a tarball: tar cvfz name.tar.gz directory/
To create a bzip2 tarball: tar cvfj class.tar.bz2 class/
To create a xz tarball: tar cvfJ class.tar.xz class/

Advanced Redirections

Redirections can be modified by placing a file descriptor (fd)
next immediately before the redirector. These fd numbers are
0 (standard input, keyboard), 1 (standard output, display), 2
(standard error, display).

Standard error can also be redirected to the same destination
that standard output is directed to using 2>&1; it merges
stderr (2) into stdout (1).

ls -d seismic 2> error.txt

ls -d seismic 2>&1 error.txt

The tee command applies command1 and command2 to file
who -u | tee whofile.txt | grep username

File Attributes and Types

The ls -l command illustrates file ownership (user, group), file
type, permissions, and date when last modified.

The first character is type; a "-" for a regular file, a "d" for a
directory, and "l" for a symbolic link. Devices are expressed
like files: "b" for block devices, "c" for character devices.

Permissions are expressed in a block of three for "user,
group, others" and for permission type (read r, write w,
execute x).

An "s" in the execute field indicated setuid. There is "t", "save
text attribute", or more commonly known as "sticky bit" in the
execute field allows a user to delete or modify only those files
in the directory that they own or have write permission for.

Change Mode

The change permissions of a file use the chmod command.
To chmod a file you have to own it. The command is : `chmod
[option] [symbolic | octal] file`. For options, the most common
is `-R` which changes files and directories recursively. In
symbolic notation user reference is either u (user, owner), g
(group), o (others), a (all). Operation is either + (add), -
(remove), = (only equals), permissions are r (read), w (write),
x (execute).

In octal notation a three or four digit base-8 value is the sum
of the component bits. The value "r" adds 4 in octal notation
(binary 100), "w" adds 2 in octal notation (binary 010) and "x"
adds 1 in octal notation (binary 001). For special modes the
first octal digit is either set to 4 (setuid), 2 (setgid), or 1
(sticky).

Links and File Content

The ln command creates a link, associating one file with
another. There are two basic types; a hard link (the default)
and a symbolic link.

A hard link is a specific location of physical data, whereas a
symbolic link is an abstract location. Hard links cannot link
directories and nor can they cross system boundaries;
symbolic links can do both of these.

With a hard link: File1 -> Data1 and File2 -> Data1 . With a
symbolic link: File2 -> File1 -> Data1

The general syntax for links is: ln [option] source destination.
e.g., ls -s file1 file2

File Manipulation

The “cut” command copies a section from each line of a file,
based on the arguments parsed to it, whereas “paste”
merges lines of files together. See also “join”

cut -d',' -f3 shakes.csv > latitude.txt
cut -d',' -f4 shakes.csv > longitude.txt
paste -d " " latitude.txt longitude.txt > shakeslist.txt

The “sort” command will organise a text file into an order
specified by options. The general syntax is sort [option] [input
file] -o [filename]. Options include -b (ignore beginning
spaces), -d (use dictionary order, ignore punctuation), -m
(merge two input files into one sorted output, and -r (sort in
reverse order).

Shell Scripts

Shell scripts combine Linux commands with logical
operations.

The most basic form of scripting simply follows commands in
sequence (e.g., /usr/local/common/AdvLinux/backup1.sh).
Variables and command substitutions add to a script (e.g.,
/usr/local/common/AdvLinux/backup2.sh). Variables use ($)
to refer to its value. ${var}bar, invoke the variable, append
"bar". Command substitution comes in the form of $
(command).

Quotes disable and encapsulate some content; single quotes
interprets everything literally. e.g.,
echo "There are $(ls | wc -l) files in $(pwd)"
echo 'There are $(ls | wc -l) files in $(pwd)'

Scripts with Loops

Scripting allows for loops (for/do, while/do, util/do). The for
loop executes stated commands for each value in the list.
The while loop allows for repetitive execution of a list of
commands, as long as the command controlling the while
loop executes successfully. The until loop executes until the
test condition executes successfully.

for item in ./*.jpeg ; do convert "$item" "${item%.*}.png" ;
done
while read line; do sleep 5; ./setquota.sh $line; done <
quotalist.txt
x=5; until [$x -le 0]; do echo "Until-do count down $x"; x=$
(($x - 1)); done

Scripts with Conditional
Branches

A set of branched conditions can be expressed through an
if/then/fi structure. A single test with an alternative set of
commands is expressed if/then/else/fi. Finally, a switch-like
structure can be constructed through a series of elif
statements in a if/then/elif/elif/.../else/fi

Conditionals can also be interrupted and resumed using the
“break” and “continue” statements. The break command
terminates the loop (breaks out of it), while continue causes a
jump to the next iteration (repetition) of the loop, skipping all
the remaining commands in that particular loop cycle.

A variant on the conditional is the “case” statement. The first
match executes the listed commands.

Shell Scripting and HPC Jobs

All shell commands and all shell scripting operations can be
included in Slurm job submission.

See: /usr/local/comm/AdvLinux/NAMD/drugdock.slurm for an
example which makes use of simple shell commands (cp,
mv, rm), globbing (*), variables (date2), shell substitution ($
(date +F%-H%.M%), redirects (2>), loops (for loop in {1..5})
etc.

A heredoc is a file or input literal, a section of source code
that is treated as a separate file. Heredocs can also be used
however to create Slurm scripts. (e.g,
/usr/local/common/AdvLinux/heres/herescript.sh).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

