Parallel Programming

Presentation to Linux Users of Victoria,
Inc.

November 4th, 2015

http://levliafayette.com

1.0 What Is Parallel Programming?

1.1 Historically, software has been written
for serial computation (discrete
instructions, sequential execution, single
processor)

1.2 Parallel programming is the
procedures used for simultaneous
computation (discrete parts, concurrent
executions, multiple processing).

1.3 Flynn's Taxonomy of Computer
Architecture into streams of data and
instructions (SISD, SIMD, MISD, MIMD).
Later three architectures allow for parallel
programming.

Daka Sheams

Ce

rmany

Inshruction Sheams

Qe

many

SlaDh

IS D

traditional won maybe pipelinad
Meurnann single CPLU COMputers
comnputer

=MD bAINAD

wactor processors
fine-grained daks,
parallel computers

multicomputers
multiprocessars

2.0 Why Do We Need Parallel

Programming?

2.1 The size of dataset are growing faster than the processing capability of unicore
systems.

2.2 Modelling most real-world phenomena is a parallel task (weather and climate,
astronomy, medicine, geological change, economics, robotics).

2.3 Heat-to-performance metrics limits unicore processing speeds, leading to cost issues.

2.4 Parallelisation allows distribution of tasks into a wider network of non-local
systems.

3.0 How Is Parallel Programming Made

Possible in Hardware and Architecture?

3.1 In individual systems units, hardware parallelisation is implemented in
multiprocessor and multicore architectures.

3.2 In a tightly-coupled distributed system (e.g., cluster computing) the system can be
considered as a single unit.

3.3 In a loosely-coupled distributed system (e.g., grid computing) the system is a
network of independent units.

L1 Caches L1 Caches

3.4 In a virtualised distributed system (e.g., cloud computing) [CPU Core] [GPU Core]
the system is an on-demand network of independent units.

Bus Interface
and

L2 Caches

o o ™,
*€, Folding@home

2* distributed computing

3.0 How Is Parallel Programming Made

Possible In Hardware and Architecture?

DILBERT BY SCOTT ADAMS

([I NEED YOU TO | MOVE SOME OF ITS
CLOUDWJASH OUR FUNCTIONS ONTO THE
SOFTUWARE, = INTERNET. BUT CALL
{ THE INTERNET A CLOUD. }

| WILL PEOPLE TAKE US
SERTOUSLY IF WE MAKE

TECHNOLOGY DECISIONS

BASED ON JARGON?

[NO ONE WILL TAKE |

US SERTOUSLY UNLESS |
WERE DOING SOME-
THING IN THE CLOUD,

CLOUDWASH?

i |
S
2
£
3
B
g
i g
E i
£ :
= o
L] ks
=
T =
F= =]
a &
b
&
[

| WE DONT CARE WHAT | WE ONLY NEED TO
SMART PEOPLE THINK. CONVINCE OUR DUMB
THERE AREN'T THAT CUSTOMERS.
MANY OF THEM. n il
DUMB PEOPLE

BELIEVE ANYTHING.

| DO YOUBELIEVE T |
MOVED OUR SOFT-—
WARE TO THE CLOUD
YESTERDAY?

wwnwdilbert.com

o212

4.0 How Is Parallel Programming

Implemented In Software?

4.1 Automatic parallelisation of a sequential program by a language's internal logic
would be very beneficial and is much desired. Alas, it is very elusive.

4.2 There are a very large variety of concurrent programming languages, libraries, API
etc. which implement parallelisation in a variety of ways.

4.3 Most common implementations are through multithreaded programming in a
shared memory environment (e.g., OpenMP) and message passing in a distributed
memory system (e.g., OpenMPI). The former uses a
fork-join procedure and the latter by building a
communications world.

4.4 A sequential program can be implemented in a
batch system to invoke multiple instances
simultaneously over different data sets (''data
parallelism'' versus ''task parallelism'')

communicator

5.0 Embarrassing Pleasures

5.1 A computation problem where it is relatively
simple to implement the task into separate
parallel problems is "'embarrassingly parallel"
(or, more optimistically, ''pleasingly parallel'').
Usually the data or tasks can be carried out
independently, simple domain decomposition.

5.2 Example #1: Generation of random numbers
in Octave using PBS job arrays.

5.3 Example #2: OpenMP "hello world" thread -——""/,

examples using C and Fortran v/

=

5.4 Example #3: OpenMPI "hello world"' tasks y__..—-—‘ /1 ' “

using C and Fortran. —— _..J//" oS
M \\‘
= i

=
f = *\M
—

6.0 Race Conditions, Locks, Profiling

6.1 General rule: programming is hard, parallel programming is really hard. Always
start with a working serial program and then determine what parts can become
parallel.

6.2 Less pleasing parallel (''more complex'') problems require communication between
tasks or changes to a shared dataset. This can be lead to race conditions.

6.3 To avoid race conditions barriers and locks can be put into place. These can either
slow down the program (barrier) or can lead to deadlocks with a mutual exclusion
problem (e.g., apocryphal Kansas railway statute) or livelocks with a circular wait
condition (polite people in a corridor problem).

6.4 Example #4: Game theory example in C and Fortran, with MPI_Wait routines.
6.5 Profiling parallel programs needs to consider load balancing between concurrent

tasks (but increases fine-grain complexity), reducing I/O (much worse that memory
operations), using profilers and debuggers (e.g., PDT/TAU, Valgrind, GDB).

7.0 Parallel Computation Limits and

Solutions

7.1 The benefit from parallelisation can be computed as a ratio: Speedup (p) = Time

(serial)/ Time (parallel)

7.2 However parallel compution must include some serial component. This component
sets a limit on the advantage gained from parallelisation. i.e., S(N) =1/ (1-P) + (P/N),

Amdahl's Law

Cores Mallacoota Sydney

1 8 hours +8 hours
2 8 hours +4 hours
4 8 hours +2 hours
8 8 hours +1 hour
Inf 8 hours +nil

Total Time
16 hours
12 hours
10 hours

9 hours

8 hours

7.3 The Gustafon-Barsis solution to Amdahl's Law is to effectively to reduce the serial
proportion by making the parallel tasks larger. Why stop at Sydney?

8.0 Further Examples of Parallel

Computation

8.1 Example #5: R with SNOW library

R is usually a single-core application. However using the Rmpi and SNOW
libraries, MPI functionality can be provided. The R script creates a random data
set and samples, fits the model to the samples, and eventually the mean squared
difference — with a test to ensure that the results are equal.

8.2 Example #6: Octave with Parallel and MPI examples

Like R, Octave by default is a unicore application but can be extended with
packages to provide multicore functionality, specifically the parallel and MPI
packages. These two examples create a vector from basic function and make a
calculation of Pi.

8.3 Example #7: Python with Multiprocessor Package Examples

Three examples (courtesy of Praetorian) generate N random integers, and
calculate the sum of the generated integers. The timed first example is without any
multicore functionality. The second and third approach uses subprocesses from
the Python, with the latter making use of a pool.

N

"

i
o~y
"" '.Jl-"f' -
LT b

e

el N AN N U W L
S THANKS F(

AN

AN

AN

5
=
L
P "
=y
1
oy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

