

The Spartan HPC System at the
University of Melbourne

COMP90024 Cluster and Cloud Computing

University of Melbourne, March 13, 2024
lev.lafayette@unimelb.edu.au

Outline of Lecture

Welcome! Current title: HPC Service Team Lead. I’ve been working in the HPC
space since the mid-2000s. I collect degrees (BA (Hons), GradCertPM,
GradCertAdult&TertEd, GradDipAppPsych, MBA, MSc, MHEd, MCCSAP).

This lecture will include:

Some background on supercomputing, high performance computing, parallel
computing, research computing.

An introduction to Spartan, University of Melbourne's HPC general purpose HPC
system.

Logging in, help, and environment modules.

Job submission with Slurm workload manager; simple submissions, multicore, job
arrays, job dependencies, interactive jobs.

Parallel programming with shared memory and threads (OpenMP) and distributed
memory and message passing (OpenMPI) and use of MPI4Py

Why Supercomputers?

Data size and complexity is growing much faster than the capacity of personal
computational devices to process that data[1][2], primarily to the heat issues
associated with increased clock-speed (Dennard scaling).

Various technologies to mitigate this problem; multi-processor systems, multi-core
processors, shared and distributed memory parallel programming, general purpose
graphics processing units, non-volatile memory (the PDP-11 gets the last laugh),
RoCE/RDMA and network topologies, and so forth.

All of these are incorporated in various HPC systems and at scale. Increased
research output[3], exceptional return on investment (44:1 profits or cost-savings
[4]) – or between $63 to $91 (from Fugaku analysis, 2023).

Imagine SARS-COVID-19 without supercomputers!

Supercomputers are critical for the calculations involved in climate and
meteorological models, geophysics simulations, biomolecular behaviour,
aeronautics and aerospace engineering, radio telescope data processing, particle
physics, brain science, etc.

Some Local Examples

Researchers from Monash University, the Peter
MacCallum Cancer Institute in Melbourne, the
Birkbeck College in London, and VPAC in 2010
unravelled the structure the protein perforin [5].

In 2015 researchers from VLSCI announced how
natural antifreeze proteins bind to ice to prevent
it growing which has important implications for
extending donated organs and protecting crops
from frost damage [6].

In 2016 CSIRO researchers successfully manipulated
the behaviour of Metallic Organic Frameworks to
control their structure and alignment which provides opportunities for real-time and
implantable medical electric devices [7].

In 2019 a research team, including University of Melbourne on Spartan, broke the
Zodiac cipher 360 which had eluded criminal and legal teams in the United States for
over fifty years [8].

At the University of Melbourne there in 2024 has been the development of a
respository of COVID-19 related molecular dynamics simulations and utilisation and
antivirals [9].

Supercomputers

'Supercomputer” arbitrary term. In general use it means any single computer
system (itself a contested term) that has exceptional processing power for its time.
One metric is the number of floating-point operations per second (FLOPS) such a
system can carry out.

Supercomputers, like any other computing system, have improved significantly over
time. The Top500 list is based on FLOPS using LINPACK - HPC Challenge is a
broader, more interesting metric.

1994: 170.40 GFLOPS 1996: 368.20 GFLOPS 1997: 1.338 TFLOPS 1999: 2.3796
TFLOPS 2000: 7.226 TFLOPS 2004; 70.72 TFLOPS 2005: 280.6 TFLOPS 2007:
478.2 TFLOPS 2008: 1.105 PFLOP 2009: 1.759 PFLOPS
2010: 2.566 PFLOPS 2011: 10.51 PFLOPS
2012: 17.59 PFLOPS 2013: 33.86 PFLOPS
2014: 33.86 PFLOPS 2015: 33.86 PFLOPS
2016: 93.01 PFLOPS 2017: 93.01 PFLOPS
2018: 143.00 PFLOPS 2019: 148.60 PFLOPS
2020: 442.01 PFLOPS 2021: 442.01 PFLOPS
2022: 1.102 EFLOPS 2023: 1.194 EFLOPS

The Exaflop benchmark was reached in 2022 by the Frontier system at Oak Ridge
National Laboratory in the United States.

High Performance Computing

High-performance computing (HPC) is any computer system whose architecture
allows for above average performance. A system that is one of the most powerful in
the world, but is poorly designed, could be a "supercomputer".

Clustered computing is when two or more computers serve a single resource. This
improves performance and provides redundancy; typically a collection of smaller
computers strapped together with a high-speed local network (e.g., Myrinet,
InfiniBand, 10 Gigabit Ethernet). Even a cluster of Raspberry Pi with
Lego chassis (University of
Southampton, 2012)!

Horse and cart as a computer
system and the load as the
computing tasks. Efficient
arrangement, bigger horse and
cart, or a teamster?

The clustered
HPC is the most efficient,
economical, and scalable
method, and for that reason
it dominates supercomputing.

Parallel and Research Programming

With a cluster architecture, applications can be more easily parallelised across
them. Parallel computing refers to the submission of jobs or processes over multiple
processors and by splitting up the data or tasks between them (random number
generation as data parallel, driving a vehicle as task parallel).

Research computing is the software applications used by a research community to
aid research. This skills gap is a major problem and must be addressed because as
the volume, velocity, and variety of datasets increases then researchers will need to
be able to process this data.

Reproducibility in science is a huge issue! Many of the problems relate to
inattentiveness to software versions, compilers and options, etc. all of which can be
very site-specific in HPC facilities. See: The Ten Year
Reproducibility Challenge (https://www.nature.com/articles/d41586-020-02462-7).
Also, the limitations of number systems used in computing.

https://www.nature.com/articles/d41586-020-02462-7

HPC Cluster Design

It's A GNU/Linux World

From November 2017 onwards of the Top 500 Supercomputers worldwide,
every single machine used Linux.

The command-line interface provides a great deal more power and is very resource
efficient.

GNU/Linux scales and does so with stability and efficiency.
Critical software such as the Message Passing Interface (MPI)
 and nearly all scientific programs are designed to work with
GNU/Linux.

The operating system and many applications are provided
as "free and open source", which means that not only are
there are some financial savings, were also much better
placed to improve, optimize and maintain specific programs.

Free or open source software (not always the same thing)
can be can be compiled from source for the specific
hardware and operating system configuration, and can be
optimised according to compiler flags. There is necessary
where every clock cycle is important.

Limitations of Parallel Computation

Parallel programming and multicore systems should mean better performance. This
can be expressed a ratio called speedup

Speedup (p) = Time (serial)/
Time (parallel)

Correctness in parallelisation
requires synchronisation.
Synchronisation and atomic
operations causes loss of
performance, communication
latency.

Amdahl's law, establishes the
maximum improvement to a
system when only part of the
system has been improved.

Gustafson's law overcame
this limitation through
expanding the size of the
problem.

Stepping Around the Limits

Gustafson and Barsis (1988) noted that Amadahl's Law assumed a computation
problem of fixed data set size.

If one increases the size of the dataset, the benefit of parallelisation increases!

Consider driving to Sydney from Melbourne via the coastline, with a “multicore
engine” installed in Mallacoota, but then increasing this to other cities.

Cores Mallacoota Sydney Total Time Brisbane Cairns Total Time
1 8 hours +8 hours 16 hours +8 hours +8 hours 32 hours
2 8 hours +4 hours 12 hours +4 hours +4 hour 20 hours
4 8 hours +2 hours 10 hours +2 hours +2 hours 14 hours
8 8 hours +1 hour 9 hours +1 hour +1 hour 11 hours
..
Inf 8 hours +nil 8 hours +nil +nil 8 hours

If you can make use of parallelisation you should make use of it! It will always
generate some benefit, and the larger the problem the bigger the gain.

UniMelb HPC System: Spartan

A detailed review was conducted in 2016 looking at
the infrastructure of the Melbourne Research Cloud,
High Performance Computing, and Research Data
Storage Services. University desired a 'more unified
experience to access compute services'

The recommended solution was to make use of
existing NeCTAR Research cloud with an expansion
of general cloud compute provisioning and use of a
smaller "true HPC" system on bare metal nodes.

Since then Spartan has taken up a large GPGPU
partition, moving from a small, experimental
system, to a world-class facility. We have also moved
 all our partitions to physical nodes and have
introduced interactive graphical tools such as
OpenOnDemand.

Complete list of current partitions and storage at :

https://dashboard.hpc.unimelb.edu.au/status_specs/

Spartan is Small but Important

.

Spartan as a model of an HPC-Cloud Hybrid has been featured at Multicore World,
Wellington, 2016, 2017; eResearchAustralasia 2016 and several European HPC
centres, including the European Organization for Nuclear Research (CERN), 2016,
and the OpenStack Summit, Barcelona 2016.
https://www.youtube.com/watch?v=6D1lobuCZqE

Also featured in OpenStack and HPC Workload Management in Stig Telfer (ed), The
Crossroads of Cloud and HPC: OpenStack for Scientific Research, Open Stack, 2016
http://openstack.org/assets/science/OpenStack-CloudandHPC6x9Booklet-v4-
online.pdf

Architecture also featured in:
Spartan and NEMO: Two HPC-Cloud Hybrid Implementations.
2017 IEEE 13th International Conference on e-Science, DOI:
10.1109/eScience.2017.70

The Chimera and the Cyborg, Hybrid Compute Advances in Science, Technology
and Engineering Systems Journal Vol. 4, No. 2, 01-07, 2019

Other presentations on Spartan include use of the GPGPU partition at eResearch
2018, its development path at eResearchAU 2020, interactive HPC at eResearchNZ
2021, and more! Hundreds papers cite Spartan as a contributing factor their
research.

Spartan Is Finally Recognised

.

Setting Up An Account and Training

Spartan uses its own authentication that is tied to the university Security Assertion
Markup Language (SAML). The login URL is
https://dashboard.hpc.unimelb.edu.au/karaage

Users on Spartan must belong to a project. Projects must be led by a University of
Melbourne researcher (the "Principal Investigator") and are subject to approval by
the Head of Research Compute Services. Participants in a project can be
researchers or research support staff from anywhere.

The University, through Research Platforms, has an extensive training programme
for researchers who wish to use Spartan.

University of Melbourne is a major contributor to the International HPC Certification
Program. https://www.hpc-certification.org/

University of Melbourne also contributes to the Easybuild software build system
repository
https://easybuild.io/

https://www.hpc-certification.org/

Logging In and Help

To log on to a HPC system, you will need a user account and password and a Secure
Shell (ssh) client. Linux distributions almost always include SSH as part of the
default installation as does Mac OS 10.x, although you may also wish to use the
Fugu SSH client. For MS-Windows users, the free PuTTY client or MobaXterm is
recommended. To transfer files use scp, WinSCP, Filezilla, and especially rsync.

Logins to Spartan are based on POSIX identity for the system

ssh your-username@spartan.hpc.unimelb.edu.au

To consider making an SSH config file, and using passwordless SSH. See:
https://dashboard.hpc.unimelb.edu.au/ssh/

For help go to http://dashboard.hpc.unimelb.edu.au or check man spartan.

Lots of example scripts at /apps/examples

Need more help? Problems with submitting a job, need a new application or
extension to an existing application installed, if job generated unexpected errors
etc., an email can be sent to: hpc-support@unimelb.edu.au

The Linux Environment and Modules

Everyone will need exposure to the GNU/Linux command line. If not, you'd better
get some! At least learn the twenty or so basic environment commands to navigate
the environment, manipulate files, manage processes. Plenty of good online
material available (e.g., my book "Supercomputing with Linux",
https://github.com/VPAC/superlinux)

Environment modules provide for the dynamic modification of the user's
environment (e.g., paths) via module files. Each module contains the necessary
configuration information for the user's session to operate according according to
the modules loaded, such as the location of the application's executables, its
manual path, the library path, and so forth.

Modulefiles also have the advantages of being shared with many users on a system
and easily allowing multiple installations of the same application but with different
versions and compilation options.

https://github.com/VPAC/superlinux

Modules Commands

Some basic module commands include the following:

module help
The command module help , by itself, provides a list of the switches, subcommands,
and subcommand arguments that are available through the environment modules
package.

module avail
This option lists all the modules which are available to be loaded.

module whatis <modulefile>
This option provides a description of the module listed.

module display <modulefile>
Use this command to see exactly what a given modulefile will do to your
environment, such as what will be added to the PATH, MANPATH, etc. environment
variables.

More Modules Commands

module load <modulefile>
This adds one or more modulefiles to the user's
current environment (some modulefiles load other
modulefiles.

module unload <modulefile>
This removes any listed modules from the user's
current environment.

module switch <modulefile1> <modulefile2>
This unloads one modulefile (modulefile1) and loads
another (modulefile2).

module purge
This removes all modules from the user's environment.

In the lmod system as used on Spartan there is also “module spider” which will
search for all possible modules and not just those in the existing module path and
provide descriptions.

(Image from NASA, Apollo 9 “spider module”)

Batch Systems and Workload Managers

The Portable Batch System (or simply PBS) is a utility software that performs job
scheduling by assigning unattended background tasks expressed as batch jobs
among the available resources.

The original Portable Batch System was developed by MRJ Technology Solutions
under contract to NASA in the early 1990s. In 1998 the original version of PBS was
released as an open-source product as OpenPBS. This was forked by Adaptive
Computing (formally, Cluster Resources) who developed TORQUE (Terascale Open-
source Resource and QUEue Manager). Many of the original engineering team is
now part of Altair Engineering who have their own version, PBSPro.

In addition to this the popular job scheduler Slurm (originally “Simple Linux Utility
for Resource Management”), now simply called Slurm Workload Manager, also uses
batch script where are very similar in intent and style to PBS scripts.

Spartan uses the Slurm Workload Manager. A job script written on one needs to be
translated to another (handy script available pbs2slurm
https://github.com/bjpop/pbs2slurm)

In addition to this variety of implementations of PBS different institutions may also
make further elaborations and specifications to their submission filters (e.g., site-
specific queues, user projects for accounting). (Image from the otherwise dry IBM 'Red Book'

on Queue Management)

Submitting and Running Jobs

Submitting and Running Jobs

Submitting and running jobs is a relatively straight-forward process consisting of:

1) Setup and launch
2) Job Control, Monitor results
3) Retrieve results and analyse.

Don't run jobs on the login node! Use the queuing system to submit jobs.

1. Setup and launch consists of writing a short script that initially makes resource requests and
then commands, and optionally checking queueing system.

Core command for checking queue: squeue | less
Alternative command for checking queue: showq -p physical | less
Core command for job submission: sbatch [jobscript]

2. Check job status (by ID or user), cancel job.

Core command for checking job in Slurm: squeue -j [jobid]
Detailed command in Slurm: scontrol show job [jobid]
Core command for deleting job in Slurm: scancel [jobid]

3.Slurm provides an error and output files They may also have files for post-job processing.
Graphic visualisation is best done on the desktop.

Simple Script Example

#!/bin/bash
Many of these are defaults for illustration – they are not needed!
#SBATCH –partition=cascade
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
This one is needed, as the default walltime is 10 minutes!
#SBATCH --time=01:00:00

module load my-app-compiler/version
my-app data

The script first invokes a shell environment, followed by the partition the job will run on (the
default is 'physical' for Spartan). The next four lines are resource requests, specifically for one
compute node, one task. Note default values don't need to be included.

After these requests are allocated, the script loads a module and then runs the executable
against the dataset specified. Slurm also automatically exports your environment variables when
you launch your job, including the directory where you launched the job from. If your data is a
different location this has to be specified in the path!

After the script is written it can be submitted to the scheduler.

[lev@spartan]$ sbatch myfirstjob.slurm

Multithreaded, Multicore, and Multinode
Examples

Modifying resource allocation requests can improve job efficiency.

For example shared-memory multithreaded jobs on Spartan (e.g., OpenMP), modify the --cpus-
per-task to a maximum of 8, which is the maximum number of cores on a single instance.

#SBATCH --cpus-per-task=8

For distributed-memory multicore job using message passing, the multinode partition has to be
invoked and the resource requests altered e.g.,

#!/bin/bash
#SBATCH -partition=cascade
#SBATCH --nodes=2
#SBATCH –ntasks-per-node=4
module load my-app-compiler/version
srun my-mpi-app

Note that multithreaded jobs cannot be used in a distributed memory model across nodes. They
can however exist be conducted on distributed memory jobs which include a shared memory
component (hybrid OpenMP-MPI jobs).

Arrays and Dependencies

Alternative job submissions include specifying batch arrays, and batch dependencies.

In the first case, the same batch script, and therefore the same resource requests, is used multiple
times. A typical example is to apply the same task across multiple datasets. The following example
submits 10 batch jobs with myapp running against datasets dataset1.csv, dataset2.csv, ...
dataset10.csv

#SBATCH --array=1-10
myapp ${SLURM_ARRAY_TASK_ID}.csv

In the second case a dependency condition is established on which the launching of a batch script
depends, creating a conditional pipeline. The dependency directives consist of `after`, `afterok`,
`afternotok`, `before`, `beforeok`, `beforenotok`. A typical use case is where the output of one job
is required as the input of the next job.

#SBATCH --dependency=afterok:myfirstjobid mysecondjob

Interactive Jobs

For real-time interaction, with resource requests made on the command line, an
interactive job is called. This puts the user on to a compute node.

This is typically done if they user wants to run a large script (and shouldn't do it
on the login node), or wants to test or debug a job. The following command would
launch one node with two processors for ten minutes.

[lev@spartan interact]$ sinteractive --nodes=1 --ntasks-per-node=2
srun: job 164 queued and waiting for resources
srun: job 164 has been allocated resources
[lev@spartan-rc002 interact]$

PBS, SLURM Comparison
User Commands PBS/Torque SLURM

Job submission qsub [script_file] sbatch [script_file]

Job submission qdel [job_id] scancel [job_id]

Job status (by job) qstat [job_id] squeue [job_id]

Job status (by user) qstat -u [user_name] squeue -u [user_name]

Node list pbsnodes -a sinfo -N

Queue list qstat -Q squeue

Cluster status showq, qstatus -a squeue -p [partition]

Environment

Job ID $PBS_JOBID $SLURM_JOBID

Submit Directory $PBS_O_WORKDIR $SLURM_SUBMIT_DIR

Submit Host $PBS_O_HOST $SLURM_SUBMIT_HOST

Node List $PBS_NODEFILE $SLURM_JOB_NODELIST

Job Array Index $PBS_ARRAYID $SLURM_ARRAY_TASK_ID

PBS and SLURM Comparison
Job Specification PBS SLURM

Script directive #PBS #SBATCH

Queue -q [queue] -p [queue]

Job Name -N [name] --job-name=[name]

Nodes -l nodes=[count] -N [min[-max]]

CPU Count -l ppn=[count] -n [count]

Wall Clock Limit -l walltime=[hh:mm:ss] -t [days-hh:mm:ss]

Event Address -M [address] --mail-user=[address]

Event Notification -m abe --mail-type=[events]

Memory Size -l mem=[MB] --mem=[mem][M|G|T]

Proc Memory Size -l pmem=[MB] --mem-per-cpu=[mem][M|G|T]

Shared Memory Parallel Programming

One form of parallel programming is multithreading, whereby a master thread forks a number of
sub-threads and divides tasks between them. The threads will then run concurrently and are
then joined at a subsequent point to resume normal serial application.

One implementation of multithreading is OpenMP (Open Multi-Processing). It is an Application
Program Interface that includes directives for multi-threaded, shared memory parallel
programming. The directives are included in the C or Fortran source code and in a system
where OpenMP is not implemented, they would be interpreted as comments.

There is no doubt that OpenMP is an easier form of parallel programming, however it is limited
to a single system unit (no distributed memory) and is thread-based rather than using message
passing. Many examples in `/usr/local/common/OpenMP`.

(image from: User A1, Wikipedia)

Shared Memory Parallel Programming

#include <stdio.h>
#include "omp.h"
int main(void)
{

int id;
#pragma omp parallel num_threads(8) private(id)
{
int id = omp_get_thread_num();
printf("Hello world %d\n", id);
}

return 0;
}

program hello2omp
include "omp_lib.h"
integer :: id
!$omp parallel num_threads(8) private(id)
 id = omp_get_thread_num()

 print *, "Hello world", id
!$omp end parallel

end program hello2omp

Distributed Memory Parallel
Programming

Moving from shared memory to parallel programming involves a conceptual change
from multi-threaded programming to a message passing paradigm. In this case,
MPI (Message Passing Interface) is one of the most well popular standards and is
used here, along with a popular implementation as OpenMPI.

The core principle is that many processors should be
able cooperate to solve a problem by passing messages
to each through a common communications network.

The flexible architecture does overcome serial
bottlenecks, but it also does require explicit
programmer effort (the "questing beast" of
automatic parallelisation remains somewhat
elusive).

The programmer is responsible for identifying
opportunities for parallelism and implementing
algorithms for parallelisation using MPI.

Distributed Memory Parallel
Programming

#include <stdio.h>
#include "mpi.h"
int main(argc, argv)
int argc;
char **argv;
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf("Hello world from process %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

! Fortran MPI Hello World
 program hello
 include 'mpif.h'
 integer rank, size, ierror, tag, status(MPI_STATUS_SIZE)

 call MPI_INIT(ierror)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
 print*, 'node', rank, ': Hello world'
 call MPI_FINALIZE(ierror)
 end

MPI Compilation and Job Scripts

The OpenMP example needs to be compiled with OpenMP directives. The OpenMP example
cannot run across compute nodes; therefore it is best run on the “cloud” partition. The
OpenMPI compilation needs to call the MPI wrappers.

module load OpenMPI/1.10.0-GCC-4.9.2
gcc -fopenmp helloomp.c -o helloompc
mpigcc mpihelloworld.c -o mpihelloworld

#!/bin/bash
#SBATCH --partition=physical
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=16
export OMP_NUM_THREADS=16
module load GCC/4.9.2
mpiexecu helloompc

#!/bin/bash
#SBATCH -p physical
#SBATCH --nodes=2
#SBATCH --ntasks=16
module load OpenMPI/1.10.2-GCC-4.9.2
mpiexec mpi-helloworld

MPI4Py for Python

Python too has various MPI bindings available. The most common used is MPI4Py.
Examples are in the Spartan directory, /apps/examples.. As a package it can be simply
imported (e.g., `from mpi4py import MPI`) when the module is loaded (module load
mpi4py). The “Hello World” example has the core routines from MPI.

from mpi4py import MPI
import sys
size = MPI.COMM_WORLD.Get_size()
rank = MPI.COMM_WORLD.Get_rank()
print("Helloworld! I am process %d of %d.\n" % (rank, size))

But remember! With environment modules with extensions you do not necessarily get all
the packages/libraries/extensions that you might expect. See the README file for an
explanation of how to review the extensions already installed.

Examples for MPI4Py (and others) will be conducted at the workshop!

References
[1] Hilbert M, Lopez P. "The world's technological capacity to store, communicate,
and compute information". Science. 332 (6025) 2011
[2] Guo, Huadong, et al. "Scientific big data and digital earth." Chinese Science
Bulletin 59.35 (2014): 5066-5073.
[3] Apon, Amy., et al., High Performance Coputing Instrumentation and Research
Productivity in U.S. Universities, Journal of
Information Technology Impact, Vol 10, No 2, pp87-98, 2010
[4] Joseph, Earl., et al., Creating Economic Models Showing the Relationship
Between Investments in HPC and the Resulting Financial
ROI and Innovation — and How It Can Impact a Nation's Competitiveness and
Innovation, IDC Special Study, October 2013
[5] Law, R., Lukoyanova, N., Voskoboinik, I. et al. The structural basis for membrane
binding and pore formation by lymphocyte perforin. Nature 468, 447–451 (2010).
https://doi.org/10.1038/nature09518
[6] Kuiper, Michael J et al. “The biological function of an insect antifreeze protein
simulated by molecular dynamics.” eLife vol. 4 e05142. 7 May. 2015,
doi:10.7554/eLife.05142
[7] Rubio-Martinez, Marta, et al. "New synthetic routes towards MOF production at
scale." Chemical Society Reviews 46.11 (2017): 3453-3480.
[8] ABC News, https://www.abc.net.au/news/2020-12-12/zodiac-killer-code-cracked-
by-australian-mathematician/12977342
[9] Liang, J. J., Pitsillou, E., Hung, A., & Karagiannis, T. C. (2024). A repository of
COVID-19 related molecular dynamics simulations and utilisation in the context of
nsp10-nsp16 antivirals. Journal of Molecular Graphics and Modelling, 126, 108666.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

